Comparing Application
Frameworks

Sean A Corfield
“An Architect's View”
http://corfield.org/
sean(@corfield.org

I Goals

I e Introduce you to three frameworks

e Use a sample application to show how
frameworks help with (and shape) application
structure

e Cover pros and cons of each framework
e Provide you with enough information to make

a decision on which one to use for a given
project

I Who Am 1?

mid-2000)
A ColdFusion developer (since late-2001)
A Mach Il developer (since mid-2003)
A Fusebox developer (since late-2004)
* A Model-Glue developer (since early-2005)

I e Senior Architect for Macromedia IT (since

 An advocate of standards and best practices
(since birth?)

I Agenda

e Frameworks: What? Why?
I Overviews of:
- Fusebox 4
- Mach |l
- Model-Glue
e Some Similarities
o Sample Application
e Some Differences
e Some Pros & Cons
e Conclusion

Frameworks: What? Why?

e A framework...
— ...Is reusable code that provides the base on which
to build applications in a standard way.
- ...often implements an architecture which then
shapes how the application is designed.

e A good framework...
— ...saves development time — because it provides a lot
of standard infrastructure out-of-the-box.
— ...eases maintenance — because it provides a
common structure to all applications.

I Overview of Fusebox 4

* Procedural core framework (4 .cfm + 2 UDF libs)
I e Available for CF5, CFMX, BD, PHP
e Electrical metaphor of fusebox, circuits and

fuses
— index.ctm”fuseaction=mycircuit. myfuseaction
- Routes to myfuseaction handler in circuit mycircuit

— Each fuseaction handler contains XML verbs
e <do action="somecircuit.somefuseaction”/>
e <include template="somefuse”/>

e Translates XML to CFML (PHP) on first use

Overview of Fusebox 4
Continued

fusebox.xmil

Fusebox
core files

parsed

circuit.xmil

'-_._..-v-'""'-—-__

circuit.xmi

1-_....-’-"".—-_-

dspHomePage.ctm

dspContactPage.cfm

qryGetGreeting.cfm

actSendEmail.cfm

On the first request, the core files load and validate
the XML files. The first time each circuitfuseaction
is requested, the relevant XML is transformed into
straight-line CFML in the parsed directory.

Requests are executed by simply including the
parsed file for the given circuitfuseaction.

parsed.home.welcome.cfm

parsed.home.contact.cfm

e

I Overview of Mach I

e Available for CFMX, also BD, limited PHP beta

 Event-based, implicit invocation architecture
- Index.cfm”event=myevent
- Routes request to myevent event handler

- Each event handler contains XML verbs
e <notify listener="somecfc” method="somemethod"/>
e <announce event="anotherevent”/>

e Dynamically processes the queue of events
(semi-interpreted)

I e Object-oriented core framework (29 CFCs)

I Overview of Mach |l Continued

I mach-ii.xml

I Overview of Model-Glue

- Includes a number of utilities
e Available for CFMX, also BD

 Event-based, implicit invocation architecture
- index.cfm?event=myevent
- Routes request to myevent event handler

- Each event handler does one or more of:
e Broadcasts messages
e Renders views
e Maps results to new events

I e Object-oriented core framework (22 CFCs)

Overview of Model-Glue
Continued

‘ ModelGilue. xmil
.

Configurs
Framewark

'
MndEl-\iED:_, Broadcast - Controllers
Core f_ll/e.s_) (.cfc)
'|

L
Call S
Returm

W
Include W

I Some Similarities

* index.cfm & framework-as-controller

e XML-based configuration

* One-stop core files

e Public / private “handlers”

e Plugin architecture (Fusebox / Mach Il)

I * Focused on separation of logic from presentation

I Sample Application

- Simple user identification
— List tasks

— Add / edit tasks
— Assign tasks to users

e Intended to be a demo not necessarily best
practice!
e [demo]

I e Atask manager for a cat club

I Old-School Fusebox

Lifecycle Process)

e Design focuses on pages, exits (links / submit
buttons)

e Circuits used for related functionality: user
identity, task management, general site stuff

e Traditional fuse structure: action, query, display,
layout.

 [look at source code]

I e Created with Adalon using FLIP (Fusebox

Old-School Fusebox

ggce
circuit.xmil

fusebox.xml

identity
circuit.xmil <

1——.—-""-—-'_‘

taskmanager
circuit.xmil

'*-—.-i-"""-—'_h

dspShowContact.cim

actSendMail.cfm

dspShowldentity.cfm

aryGetMembers.cfm

dspShowTaskList.cim

qryGetTaskList.cfm

I MVC Fusebox

Model, View, Controller (each of which may have
sub-circuits)

e Only Controller has public fuseactions (Model
and View are all internal)

 Model contains all the action and query fuses,
View contains the display and layout fuses

 [look at source code]

I e Separation of fuses into three primary circuits:

fusebox.xmil

MVC Fusebox

controller
circult.xxmil

model ggcc
circuit.xml

"-—.d#’—‘

model identity

wview
circuit.xmil

circuit.xomil

"-.J"—‘

model
taskmanager

L p actSendMail.cfm

— gryGetMembers.cfm

—— gryGetTaskList.cfm

circuit.xml

dspShowContact.cfm

—é dspShowldentity.cfm

dspShowTaskList.cfm

I OO Fusebox

 Model is replaced by CFCs
I — action and query fuses become one or more
methods — each circuit might become one CFC
— Controller circuit uses <invoke> verb to call methods

e Some fuses must become multiple methods or
must return complex results

* Initialization of service CFCs happens In
fusebox.init.cfm (for example)

 [look at source code]

sendMail()

getTaskList()

dspShowContact.cfm

dspShowldentity.cfm
dspShowTaskList.cfm

I Mach Il

— Best practice would split CFCs into listeners,
business objects, data access objects etc

e Controller (mach-ii.xml) uses <notify> verb to call
methods

e Controller also invokes views directly (there's
only one XML file)

e |nitialization of service CFCs is handled
automatically by the framework

 [look at source code]

I e Model is CFCs (very similar to OO Fusebox)

sendMail{)

getMembers()

getTaskList()

dspShowContact.cfm

dspShowldentity.cfm
dspShowTaskList.ctm

Model-Glue

Model is CFCs (very similar to Mach Il)

— Best practice would separate controllers from model

Each event handler (ModelGlue.xml):

- Broadcasts messages

- Framework invokes registered “listener” methods on
controllers (CFCs)

- Includes views

- Maps result states to new events

Initialization of service CFCs is handled
automatically by the framework (bean factory)
[look at source code]

dspShowContact.cfm

dspShowldentity.cfm
dspShowTaskList.cfm

I Some Small Differences
e Fusebox e Mach Il / Model-Glue
I e Per-circuit XML files < Single XML file
e CFCs and MVC are e« Requires CFCs and
optional in Fusebox enforces MVC
e Circuits allow for Monolithic applications

modular applications (but can share session)
e Basic permissions e Roll your own
model built in permissions/security

Some Big Differences

Fusebox/Model-Glue « Mach I
Static event handling ¢ Dynamic event handling

— circuit.xml/ModelGlue. - mach-ii.xml has no logic
xml is the entire logic paths
path

— All execution paths — Execution paths are
are spelled out Implied by code

- Dynamic events mean - Dynamic events happen
redirects internally

Fusebox e Mach ll/Model-Glue

Explicit invocation e Implicit invocation

Some Fusebox Pros & Cons

Pros e Cons

Easier to learn o Still easy to write
Supports multiple spaghetti code
programming styles ¢ Lots of framework
Fine-grained control options to learn
over framework e Procedural code
behavior Isn't “cool”

Better modularity

e XML grammar is

expressive &
extensible

I Some Mach Il Pros & Cons

 Pros e Cons
I e Enforces / supports ¢ OO, MVC, CFCs &
best practices more implicit event queue
fully have a steep learning
e Fairly simple, curve
consistent framework ¢ Monolithic XML file can
structure be hard to manage

e CFCs are building e Less granular control of
blocks that extend the framework
framework (filters/ * Views require XML
listeners) declarations

I Some Model-Glue Pros & Cons

 Pros e Cons
I e Enforces / supports ¢ OO, MVC and CFCs

best practices more have a steep learning
fully curve

e Very simple, Monolithic XML file can
consistent framework be hard to manage
structure e |Less granular control of

e CFCs are building framework
blocks that extend the
framework

(controllers)

I Other Factors

e All support an OO style but Mach |l & Model-
I Glue require it — your comfort level with OO

design may influence your choice

e Fusebox has great tool support: Eclipse
plugin, Dreamweaver, FuseBuilder, Adalon

and others

 Framework architecture complexity:
- Fusebox <-----> Model-Glue <-----> Mach Il

Other Factors Continued

e Documentation is skimpy for all three (but
several books exist for Fusebox)

e User community is strong for all three (larger
and better established for Fusebox —
because Fusebox has been around longer)

e All sets of core files are essentially the
product of one person but all three
frameworks are opening up somewhat

I Other Frameworks

e Other HTML framework choices:
I - onTap — Isaac Dealey — http://fusiontap.com/
e Procedural, implicit invocation, massive HTML library

- Reaction — Murat Demirci
e Page Controller, ASP.NET-style code behind concept

 There are also some model-only frameworks

- Tartan — Paul Kenney — http://tartanframework.org/
e Service / Command / Data Access / Value Object, OO,
works well with Fusebox, Mach Il and Model-Glue

- ColdSpring — Dave Ross —
http://cfopen.org/projects/coldspring/

e |Inversion of Control, CFC Container (like Java's Spring)

I Conclusion?

I * You tell me...

e ...after seeing this presentation,
-~ Who would use Fusebox?
— Who would use Mach |17
— Who would use Model-Glue?
- Who would make a choice on a project-by-
project basis?

I What Do | Use?

use Mach |l for projects at work — it's a Web
Team standard

e I'm a contributor to Mach Il (lead developer for
1.0.10)

* | recently converted a key Mach |l application at
Macromedia to use Model-Glue instead

e | use Fusebox 4.1 for all my projects outside
work

* I'm a member of Team Fusebox

I | helped introduce Mach Il to Macromedia so |

I Conclusion

has a lot of internal state transitions which
can occur dynamically — then Mach |l may be
more appropriate

I |[f you have a very complex application — that

e |[f you want a simpler OO framework, Model-
Glue is a very good choice

e Otherwise Fusebox is easier to learn,
supports more programming styles (including
OO0) and has a stronger support community
with several books available

Resources

Fusebox http://fusebox.org/

Mach |l http://mach-ii.com/
Model-Glue http://model-glue.com/
Also http://corfield.org/fusebox/
http://corfield.org/machii/

Fusebox tools:

— Fusebox Plugin for Eclipse
http://cfopen.org/projects/fusebox3cfe/

- Fusebox Explorer for Dreamweaver
http://cfopen.org/projects/fuseboxexplorer/

— FuseBuilder http://fusebuilder.net/

— Adalon http://adalon.net/

Frameworks: Questions and
Answers?

Sean A Corfield
“An Architect's View”
http://corfield.org/
sean(@corfield.org

