
Comparing Application
Frameworks

Sean A Corfield
“An Architect's View”
http://corfield.org/
sean@corfield.org



Goals

● Introduce you to three frameworks

● Use a sample application to show how
frameworks help with (and shape) application
structure

● Cover pros and cons of each framework

● Provide you with enough information to make
a decision on which one to use for a given
project



Who Am I?

● Senior Architect for Macromedia IT (since
mid-2000)

● A ColdFusion developer (since late-2001)
● AMach II developer (since mid-2003)
● A Fusebox developer (since late-2004)
● AModel-Glue developer (since early-2005)

● An advocate of standards and best practices
(since birth?)



Agenda

● Frameworks: What? Why?
● Overviews of:

– Fusebox 4
– Mach II
– Model-Glue

● Some Similarities
● Sample Application
● Some Differences
● Some Pros & Cons
● Conclusion



Frameworks: What? Why?

● A framework...
– ...is reusable code that provides the base on which
to build applications in a standard way.

– ...often implements an architecture which then
shapes how the application is designed.

● A good framework...
– ...saves development time – because it provides a lot
of standard infrastructure out-of-the-box.

– ...eases maintenance – because it provides a
common structure to all applications.



Overview of Fusebox 4

● Procedural core framework (4 .cfm + 2 UDF libs)
● Available for CF5, CFMX, BD, PHP
● Electrical metaphor of fusebox, circuits and
fuses
– index.cfm?fuseaction=mycircuit.myfuseaction
– Routes to myfuseaction handler in circuit mycircuit
– Each fuseaction handler contains XML verbs

● <do action=”somecircuit.somefuseaction”/>
● <include template=”somefuse”/>

● Translates XML to CFML (PHP) on first use



Overview of Fusebox 4
Continued



Overview of Mach II

● Object-oriented core framework (29 CFCs)
● Available for CFMX, also BD, limited PHP beta
● Event-based, implicit invocation architecture

– index.cfm?event=myevent
– Routes request to myevent event handler
– Each event handler contains XML verbs

● <notify listener=”somecfc” method=”somemethod”/>
● <announce event=”anotherevent”/>

● Dynamically processes the queue of events
(semi-interpreted)



Overview of Mach II Continued



Overview of Model-Glue

● Object-oriented core framework (22 CFCs)
– Includes a number of utilities

● Available for CFMX, also BD
● Event-based, implicit invocation architecture

– index.cfm?event=myevent
– Routes request to myevent event handler
– Each event handler does one or more of:

● Broadcasts messages
● Renders views
● Maps results to new events



Overview of Model-Glue
Continued



Some Similarities

● Focused on separation of logic from presentation
● index.cfm & framework-as-controller
● XML-based configuration
● One-stop core files
● Public / private “handlers”
● Plugin architecture (Fusebox / Mach II)



Sample Application

● A task manager for a cat club
– Simple user identification
– List tasks
– Add / edit tasks
– Assign tasks to users

● Intended to be a demo not necessarily best
practice!

● [demo]



Old-School Fusebox

● Created with Adalon using FLiP (Fusebox
Lifecycle Process)

● Design focuses on pages, exits (links / submit
buttons)

● Circuits used for related functionality: user
identity, task management, general site stuff

● Traditional fuse structure: action, query, display,
layout.

● [look at source code]



Old-School Fusebox



MVC Fusebox

● Separation of fuses into three primary circuits:
Model, View, Controller (each of which may have
sub-circuits)

● Only Controller has public fuseactions (Model
and View are all internal)

● Model contains all the action and query fuses,
View contains the display and layout fuses

● [look at source code]



MVC Fusebox



OO Fusebox

● Model is replaced by CFCs
– action and query fuses become one or more
methods – each circuit might become one CFC

– Controller circuit uses <invoke> verb to call methods
● Some fuses must become multiple methods or
must return complex results

● Initialization of service CFCs happens in
fusebox.init.cfm (for example)

● [look at source code]



OO Fusebox



Mach II

● Model is CFCs (very similar to OO Fusebox)
– Best practice would split CFCs into listeners,
business objects, data access objects etc

● Controller (mach-ii.xml) uses <notify> verb to call
methods

● Controller also invokes views directly (there's
only one XML file)

● Initialization of service CFCs is handled
automatically by the framework

● [look at source code]



Mach II



Model-Glue

● Model is CFCs (very similar to Mach II)
– Best practice would separate controllers from model

● Each event handler (ModelGlue.xml):
– Broadcasts messages
– Framework invokes registered “listener” methods on
controllers (CFCs)

– Includes views
– Maps result states to new events

● Initialization of service CFCs is handled
automatically by the framework (bean factory)

● [look at source code]



Model-Glue



Some Small Differences

● Fusebox
● Per-circuit XML files
● CFCs and MVC are
optional in Fusebox

● Circuits allow for
modular applications

● Basic permissions
model built in

● Mach II / Model-Glue
● Single XML file
● Requires CFCs and
enforces MVC

● Monolithic applications
(but can share session)

● Roll your own
permissions/security



Some Big Differences

● Fusebox/Model-Glue
● Static event handling

– circuit.xml/ModelGlue.
xml is the entire logic
path

– All execution paths
are spelled out

– Dynamic events mean
redirects

● Fusebox
● Explicit invocation

● Mach II
● Dynamic event handling

– mach-ii.xml has no logic
paths

– Execution paths are
implied by code

– Dynamic events happen
internally

● Mach II/Model-Glue
● Implicit invocation



Some Fusebox Pros & Cons

● Pros
● Easier to learn
● Supports multiple
programming styles

● Fine-grained control
over framework
behavior

● Better modularity
● XML grammar is
expressive &
extensible

● Cons
● Still easy to write
spaghetti code

● Lots of framework
options to learn

● Procedural code
isn't “cool”



Some Mach II Pros & Cons

● Pros
● Enforces / supports
best practices more
fully

● Fairly simple,
consistent framework
structure

● CFCs are building
blocks that extend the
framework (filters /
listeners)

● Cons
● OO, MVC, CFCs &
implicit event queue
have a steep learning
curve

● Monolithic XML file can
be hard to manage

● Less granular control of
framework

● Views require XML
declarations



Some Model-Glue Pros & Cons

● Pros
● Enforces / supports
best practices more
fully

● Very simple,
consistent framework
structure

● CFCs are building
blocks that extend the
framework
(controllers)

● Cons
● OO, MVC and CFCs
have a steep learning
curve

● Monolithic XML file can
be hard to manage

● Less granular control of
framework



Other Factors

● All support an OO style but Mach II & Model-
Glue require it – your comfort level with OO
design may influence your choice

● Fusebox has great tool support: Eclipse
plugin, Dreamweaver, FuseBuilder, Adalon
and others

● Framework architecture complexity:
– Fusebox <-----> Model-Glue <-----> Mach II



Other Factors Continued

● Documentation is skimpy for all three (but
several books exist for Fusebox)

● User community is strong for all three (larger
and better established for Fusebox –
because Fusebox has been around longer)

● All sets of core files are essentially the
product of one person but all three
frameworks are opening up somewhat



Other Frameworks

● Other HTML framework choices:
– onTap – Isaac Dealey – http://fusiontap.com/

● Procedural, implicit invocation, massive HTML library
– Reaction – Murat Demirci

● Page Controller, ASP.NET-style code behind concept
● There are also some model-only frameworks

– Tartan – Paul Kenney – http://tartanframework.org/
● Service / Command / Data Access / Value Object, OO,
works well with Fusebox, Mach II and Model-Glue

– ColdSpring – Dave Ross –
http://cfopen.org/projects/coldspring/

● Inversion of Control, CFC Container (like Java's Spring)



Conclusion?

● You tell me...

● ...after seeing this presentation,
– Who would use Fusebox?
– Who would use Mach II?
– Who would use Model-Glue?
– Who would make a choice on a project-by-
project basis?



What Do I Use?

● I helped introduce Mach II to Macromedia so I
use Mach II for projects at work – it's a Web
Team standard

● I'm a contributor to Mach II (lead developer for
1.0.10)

● I recently converted a key Mach II application at
Macromedia to use Model-Glue instead

● I use Fusebox 4.1 for all my projects outside
work

● I'm a member of Team Fusebox



Conclusion

● If you have a very complex application – that
has a lot of internal state transitions which
can occur dynamically – then Mach II may be
more appropriate

● If you want a simpler OO framework, Model-
Glue is a very good choice

● Otherwise Fusebox is easier to learn,
supports more programming styles (including
OO) and has a stronger support community
with several books available



Resources

● Fusebox http://fusebox.org/
● Mach II http://mach-ii.com/
● Model-Glue http://model-glue.com/
● Also http://corfield.org/fusebox/
http://corfield.org/machii/

● Fusebox tools:
– Fusebox Plugin for Eclipse
http://cfopen.org/projects/fusebox3cfe/

– Fusebox Explorer for Dreamweaver
http://cfopen.org/projects/fuseboxexplorer/

– FuseBuilder http://fusebuilder.net/
– Adalon http://adalon.net/



Frameworks: Questions and
Answers?

Sean A Corfield
“An Architect's View”
http://corfield.org/
sean@corfield.org


